35 research outputs found

    Wealth distribution across communities of adaptive financial agents

    Full text link
    This paper studies the trading volumes and wealth distribution of a novel agent-based model of an artificial financial market. In this model, heterogeneous agents, behaving according to the Von Neumann and Morgenstern utility theory, may mutually interact. A Tobin-like tax (TT) on successful investments and a flat tax are compared to assess the effects on the agents' wealth distribution. We carry out extensive numerical simulations in two alternative scenarios: i) a reference scenario, where the agents keep their utility function fixed, and ii) a focal scenario, where the agents are adaptive and self-organize in communities, emulating their neighbours by updating their own utility function. Specifically, the interactions among the agents are modelled through a directed scale-free network to account for the presence of community leaders, and the herding-like effect is tested against the reference scenario. We observe that our model is capable of replicating the benefits and drawbacks of the two taxation systems and that the interactions among the agents strongly affect the wealth distribution across the communities. Remarkably, the communities benefit from the presence of leaders with successful trading strategies, and are more likely to increase their average wealth. Moreover, this emulation mechanism mitigates the decrease in trading volumes, which is a typical drawback of TTs.Comment: 18 pages, 7 figures, published in New Journal of Physic

    Partial containment control over signed graphs

    Get PDF
    In this paper, we deal with the containment control problem in presence of antagonistic interactions. In particular, we focus on the cases in which it is not possible to contain the entire network due to a constrained number of control signals. In this scenario, we study the problem of selecting the nodes where control signals have to be injected to maximize the number of contained nodes. Leveraging graph condensations, we find a suboptimal and computationally efficient solution to this problem, which can be implemented by solving an integer linear problem. The effectiveness of the selection strategy is illustrated through representative simulations.Comment: 6 pages, 3 figures, accepted for presentation at the 2019 European Control Conference (ECC19), Naples, Ital

    Estimation of communication-delays through adaptive synchronization of chaos

    Full text link
    This paper deals with adaptive synchronization of chaos in the presence of time-varying communication-delays. We consider two bidirectionally coupled systems that seek to synchronize through a signal that each system sends to the other one and is transmitted with an unknown time-varying delay. We show that an appropriate adaptive strategy can be devised that is successful in dynamically identifying the time-varying delay and in synchronizing the two systems. The performance of our strategy with respect to the choice of the initial conditions and the presence of noise in the communication channels is tested by using numerical simulations. Another advantage of our approach is that in addition to estimating the communication-delay, the adaptive strategy could be used to simultaneously identify other parameters, such as e.g., the unknown time-varying amplitude of the received signal.Comment: Accepted for publication in Chaos, Solitons & Fractal
    corecore